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We present here evidence for carbene-to-carbene oxygen atom
transfer, R2C: + OdCR′2 f R2CdO + :CR′2. Singlet atomic
carbon abstracts oxygen atoms from a variety of carbonyl
compounds to make carbon monoxide and carbenes;1 these
highly exothermic processes can produce “hot” carbenes with
unusual behavior.2 We now report that the reactive carbenes
fluorenylidene (Fl:) and methylene (:CH2) behave analogously
if the carbene product is sufficiently stabilized with electron
donor groups (see Table 1).3 Besides its intrinsic interest as an
abstraction of adoubly bondedatom,4 this reaction represents
a photochemical route to nucleophilic carbenes.
Carbenes do abstract oxygen atoms from suitable donors such

asN-oxides,5 nitroxides,6 carbon dioxide,7 PF3O,8 or epoxides.9

Many carbenes react with molecular oxygen to give carbonyl
oxides or their isomeric dioxiranes.10 With simple carbonyl

compounds such as aldehydes,11 ketones,12 esters,13 amides,14

and ureas,15 electrophilic singlet carbenes attack the oxygen lone
electron pairs to form carbonyl ylides1. These intermediates
may then cyclize to form epoxides16 or undergo cycloaddition
with a second equivalent of carbonyl compound to give
dioxolanes.11,12g A third, almost unexplored, pathway is
fragmentation to a new carbene/carbonyl compound pair.
Indeed, Warkentinet al. have shown17 that explicit synthesis

† Michigan State University.
‡ The Ohio State University.
(1) (a) Skell, P. S.; Plonka, J. H.J. Am. Chem. Soc. 1970, 92, 836-839.

(b) Dewar, M. J. S.; Nelson, D. J.; Shevlin, P. B.; Biesiada, K., A.J. Am.
Chem. Soc.1981, 103,2802-07. (c) Ahmed, S. N.; Shevlin, P. B.J. Am.
Chem. Soc.1983, 105,6488-90.

(2) (a) Shevlin, P. B.; Wolf, A. P.Tetrahedron Lett.1970, 3987-89.
(b) Rahman, M.; Shevlin, P. B.Tetrahedron Lett.1985, 26,2959-60. (c)
Fox, J. M.; Gillen Scacheri, J. E.; Jones, K. G. L.; Jones, M., Jr.; Shevlin,
P. B.; Armstrong, B. M.; Sztyrbicka, R.Tetrahedron Lett.1992, 33,5021-
24. (d) Armstrong, B. M.; McKee, M. L.; Shevlin, P. B.J. Am. Chem. Soc.
1995, 117,3688-89.

(3) Donor groups strongly stabilize carbenes; see: Wanzlick, H. W.
Angew. Chem., Int. Ed. Engl.1962, 1, 75-80. In combination with steric
protection this effect has recently allowed stable carbenes to be isolated:
(a) Igan, A.; Grutzmacher, H.; Baceiredo, A.; Bertrand, G.J. Am. Chem.
Soc. 1988, 110,6463-66. (b) Arduengo, A. J., III; Harlow, R. L.; Kline,
M. J. Am. Chem. Soc.1991, 113,361-362. (c) Arduengo, A. J., III; Dias,
R. H. V.; Harlow, R. L.; Kline, M.J. Am. Chem. Soc.1992, 114,5530-
34. (d) Kuhn, N.; Kratz, T.Synthesis1993, 561-62. (e) Alder, R. W.; Allen,
D. R.; Williams, S. J.J. Chem. Soc., Chem. Commun. 1995, 1267-68. (f)
Arduengo, A. J., III; Goerlich, J. E.; Marshall, W. J.J. Am. Chem. Soc.
1995, 117,11027-28.

(4) Carbenes commonly abstract monovalent atoms or groups: broadly,
triplets take hydrogen and singlets halogen to yield radical pairs which may
couple, disproportionate, or diffuse apart. (a) Kirmse, W.Carbene
Chemistry, 2nd ed.; Academic Press: New York,1971. (b) Roth, H. D.
Acc. Chem. Res.1977, 10, 85-91. (c) Platz, M. S.Acc. Chem. Res. 1988,
21, 236-42. (d) Platz, M. S.; Maloney, V. M. InKinetics and Spectroscopy
of Carbenes and Biradicals; Platz, M. S., Ed.; Plenum Press: New York,
1990; Chapter 8.

(5) (a) Field, K. W.; Schuster, G. B.J. Org. Chem. 1988, 53, 4000-06.
(b) Schweitzer, E, E.; O’Neill, G. J.J. Org. Chem.1963, 28, 2460-61.

(6) Triplet diphenylcarbene deoxygenates nitroxides quantitatively, even
with OH groups present in the substrate. (a) Casal, H. L.; Werstiuk, N. H;
Scaiano, J. C.J. Org. Chem. 1984, 49, 5214-17. (b) Clark, K. B.;
Battacharyya, K.; Das, P. K.; Scaiano, J. C.J. Org. Chem.1992, 57,3706-
12.

(7) (a) For CO2 + CH2, see: Kistiakowsky, G. B.; Sauer, K.J. Am.
Chem. Soc. 1968, 90, 1066-71. Milligan, D. E.; Jacox, M. E.J. Chem.
Phys.1962, 36, 2911-17. Laufer, A. H.; Bass, A. M.Chem. Phys. Lett.
1977, 46,151-55. Hsu, D. S. Y.; Lin, M. C.Int. J. Chem. Kinet. 1977, 9,
1507-09. Koch, M.; Temp. F.; Wagner, R.; Wagner, H. Gg.Ber. Bunsen-
Ges. Phys. Chem.1990, 94, 645-50. (b) For CO2 + CPh2, see: Sander,
W. W. J. Org. Chem. 1989, 54, 4265-67. Wierlacher, S.; Sauer, W. W.;
Liu, M. T. H. J. Org. Chem.1992, 57, 1051-53. Sander, W. W.J. Mol.
Struct.1990, 222,21-23. Chateauneuf, E. J.Res. Chem. Intermed. 1994,
20, 159-73.

(8) Mahler, W.J. Am. Chem. Soc.1968, 90, 523-24.
(9) Shields, C. J.; Schuster, G. B.Tetrahedron Lett. 1987, 28, 853-56.
(10) Sander, W.Angew. Chem., Int. Ed. Engl.1990, 29, 344-54.

(11) L’Esperance, R. P.; Ford, T. M.; Jones, M., Jr.J. Am. Chem. Soc.
1988, 110,209-13.

(12) (a) Shimizu, N.; Bartlett, P. D.J. Am. Chem. Soc. 1978, 100,4260-
76. (b) Nikolaev, V. A.; Korobitsyna, I. K.MendeleeV Chem. J.1979, 24,
88. (c) Wong, P. C.; Griller, D.; Scaiano, J. C.J. Am. Chem. Soc. 1982,
104,6631-35. (d) Liu, M. T. H; Soundararajan, N.; Anand, S., M.; Ibata,
T. Tetrahedron Lett.1987, 1011. (e) Ibata, T.; Liu, M. T. H.; Toyoda, J.
Tetrahedron Lett.1986, 27,4383. (f) Liu, M. T. H.; Ibata, T.J. Am. Chem.
Soc. 1987, 112,774. (g) Ibata, T.; Toyoda, J.; Liu, M. T. H.Chem. Lett.
1987, 2135-38.

(13) Chateauneuf, J. E.; Liu, M. T. H.J. Am. Chem. Soc. 1991, 113,
6585-88.

(14) Padwa, A.; Hornbruckle, S. F.Chem. ReV. 1991, 91, 263-309 and
references therein.

(15) Janulis, E. P.; Arduengo, A. J., III.J. Am. Chem. Soc. 1983, 105,
5929-30.

(16) (a) Trozzolo, A. M.; Leslie, T. M.; Sarpotdar, A. S.; Small, R. D.;
Feraudi, G. J.; DoMinh, T.; Hartless, R. L.Pure Appl. Chem. 1979, 51,
261-70. (b) Arnold, D. R.; Karnischky, L. A.J. Am. Chem. Soc. 1970, 98,
1404-06. See also refs 6b and 10.

Table 1. Thermochemistry of Oxygen Donors and Selected Rate
Constants for Their Reactions with Fluorenylidene

∆Ha

X: X: XO BDEb CSEc kXO/kMeOH
kXO(LFP)
× 10-8 d

1:C: 201 -26 286 51
1H2C: 102 -26 187 0
Fl: 133e 13f 179 9
F2C: -45 -153 168 57
(MeO)2C: -35g -139 163 92 (1.2(0.2)×10-3 0.01
(H2N)2C: 39h -59 158 79
(Me2N)2C: 44i -57 160 72 (4.9(0.2)×10-1 2.6 (3)
C2H4(NMe)2C: 56i -41 156 (5.2(0.2)×10-1 2.8
:CO -26 -94 127 120
(MeO)3P: -167 -265 158 (1.4(0.2)×10-2 0.8
C4H8SO -35 -88 113
Z-2-butene -2 -30 88 3
E-2-butene -3 -31 88 9
C5H5N: 33 14 79 1.7(0.4 9 (4.8)
4-MeC5H4N: 25 6 79 1.7(0.4 9

a Unless otherwise noted, these are∆Hf values at 298 K, from:
Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R.
D.; Mallard, W. G. Gas Phase Ion and Neutral Thermochemistry.J.
Phys. Chem. Ref. Data1988, 17 (Suppl. 1).b BDE) bond dissociation
energy; note that∆Hf for oxygen is 59.6 kcal/mol at 298 K.c CSE)
carbene stabilization energy, defined as∆H(:CH2 + CX2H2 f CH4 +
:CX2). dReferenced tokMeOH ) 5 × 108 M-1 s-1, obtained with the
same LFP and protocol (ylide probe method) as the O-donor rate
constants; this value is less than literature values (∼9 × 108 M-1 s-1;
see ref 19).eFrom MP2/6-31G*//HF/6-31G* energies for X-transfer
from FlX to :CH2, with experimental∆Hf values for the reference
compounds, we estimate∆Hf(Fl:) ) 129 and 136 kcal/mol for X) O
and X) H2, respectively; the listed value is an average. A previously
cited value of 156 kcal/mol (Li, Y.; Schuster, G. B.J. Org. Chem.
1988, 53, 1273) was estimated from the semiempirical AM1 calcula-
tions. f Sabbah, R.; Watik, L. E.; Minadakis, C.C. R. Acad. Sci., Ser.
II 1988, 307, 239.g From calculated proton affinity (234 kcal/mol at
MP3/6-31+G*//HF/6-31+G*+scaled ZPE) and the experimental∆Hf

(97 kcal/mol) of (MeO)2CH+. The MP2/6-31G*//HF/6-31G*+scaled
ZPE reaction energies for F2C: + (MeO)2CdOf F2CdO+ (MeO)2C:
and (H2N)2C: + (MeO)2CdOf (H2N)2CdO+ (MeO)2C: give similar
results,-31 and-35 kcal/mol, respectively. The agreement among
these three independent calculations brings into question the-61 kcal/
mol reported in an earlier experimental study (see ref 22).h McGibbon,
G. A.; Kingsmill, C. A.; Terlouw, J. K.Chem. Phys. Lett.1994, 22,
129-34. i Substituted diaminocarbene∆Hf values were estimated via
experimental values and the MP2/6-31G*//HF/6-31G*+scaled ZPE
reaction energies for oxygen exchange with urea.
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of ylide 1 (R) CH3, R′ ) OCH3), via oxadiazoline decomposi-
tion, leads to acetone and dimethoxycarbene products.

In this work, fluorenylidene (Fl:) and methylene (:CH2) have
been examined as oxygen abstractors. The carbenes were
photolytically generated from diazofluorene (DAF) and diazo-
methane, respectively, and their reactions were studied by
product analysis and laser flash photolysis (LFP). LFP studies
of Fl: via the ylide probe method18 work well, and the
oxygenation product fluorenone (FldO) is easily detected.
Despite its triplet ground state, Fl: generally shows singlet
behavior because of the high reactivity of its singlet state and
its small singlet-triplet gap (1.1 kcal/mol).19 Similarly, singlet
reactivity dominates the chemistry of :CH2 in condensed phases
due to the singlet’s high reactivity and relatively slow rate of
intersystem crossing to the triplet ground state.20

Product Studies. In dry degassed acetonitrile or benzene,
Fl: is oxygenated by pyridine-N-oxide (PNO), 4-picoline-N-
oxide,N-methylmorpholine-N-oxide andcis- andtrans-2-butene
oxides9 to give FldO; minor byproducts are bifluorenyl,
bifluorenylidene, and, in some cases, products of reaction with
solvent.21 The poorer oxygen donorssdimethyl carbonate,
sulfolane, and trimethyl phosphatesgave similar results when
used neat. Yields of FldO were substantial, ranging from 30%
to 90% based on DAF.
Considering the stability (see Table 1) of diamino-3 and

dialkoxycarbenes,22 we examined tetramethylurea (TMU), 1,3-
dimethylimidazolidin-2-one (DMI), and dimethyl carbonate
(DMC) as substrates.23 Like the more traditional oxidants, they
reacted with Fl: to give FldO. The use of18O-labeled TMU,24

with product analysis by GC-MS,25 confirmed that the oxygen
in the product FldO came from the carbonyl substrate.
The above results implicate the corresponding stabilized

carbenes as byproducts in the urea and carbonate deoxygen-

ations. In the TMU deoxygenation, our attempts to trap the
bis(dimethylamino)carbene with alkenes such as cyclohexene,
dimethyl fumarate, acrylonitrile, or norbornadiene were unsuc-
cessful; only Fl: addition products were detected. Such highly
stabilized carbenes do not react significantly with simple olefins,
preferring to dimerize instead. The more electron-deficient
alkenes, appropriate for trapping nucleophilic carbenes, also
undergo 1,3 dipolar cycloaddition with DAF, destroying the
carbene precursor and leading ultimately to fluorene-containing
cyclopropane products. Trapping with alcohols or water yielded
more promising results; GC-MS peaks corresponding to the
O-H insertion products were observed, but these hydrolytically
sensitive materials were not isolated.
Like dimethoxycarbenes,17 in the absence of traps, the bis-

(dimethylamino)carbenes generated by TMU deoxygenation
dimerize.3 The resulting tetrakis(dimethylamino)ethylene reacts
rapidly when exposed to O2 at room temperature to produce
TMU (as in our18O-TMU synthesis)24 andVisible light. This
characteristic chemiluminescence verified the presence of car-
bene dimer when air was bubbled through photolyzed samples
of DAF in neat TMU inside a fluorimeter cavity.26 Neither
photolyzed samples of TMU without DAF nor unphotolyzed
DAF-containing samples showed chemiluminescence. The
same kind of analysis demonstrated that :CH2, generated by
photolysis of diazomethane, also abstracts oxygen from TMU.
Rate Studies. Absolute rate constants for Fl: reaction with

oxygen donors were measured by LFP using the ylide probe
method18 (see Table 1). Competition with insertion into
methanol O-H bonds allowed additional rate constants to be
calculated via the absolute rate constant for Fl: quenching with
methanol in acetonitrile.27 Table 1 shows that LFP and
competition-derived rate constants compare reasonably well; as
expected, the reactivities of oxygen donors with Fl: track
inversely with CdO bond strengths.
In summary, carbene-to-carbene oxygen atom transfer has

been demonstrated by isotopic labeling and by observation of
products from the newly generated carbene. Rate constants for
oxygen abstraction by Fl: from various donors, including ureas,
have been determined. Whether these highly exothermic oxygen
transfers occur in a single step or via the intermediacy of ylide
or oxirane intermediates is a question that is under active study.
A later report will describe detailed ab initio molecular orbital
studies of the remarkably convoluted potential energy surfaces
for carbene-to-carbene oxygen transfer reactions.
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